

Dependence of Intermittency of Fast and Slow Solar Wind from the Radial Distance, Heliospheric Latitude, and Solar Cycle

Anna Wawrzaszek¹, Marius Echim^{2,3}, Roberto Bruno⁴

(1) Space Research Centre PAS, Warsaw, Poland

(2) Royal Belgian Institute for Space Aeronomy, Brussels, Belgium

(3) Institute of Space Science, Măgurele, Romania

(4) Institute for Space Astrophysics and Planetology, Roma, Italy

Space Climate Symposium, 19-22 September 2022

Turbulence in the solar wind

The spectral properties of magnetic field and plasma velocity fluctuations show power law behavior

Typical interplanetary magnetic field power spectrum at 1 AU (Bruno and Carbone, 2013]

Intermittency-the property of the plasma structures carying the turbulent fluctuations to break down heterogeneously at smaller and smaller scales, i.e. they become scattered in time and/or space

Intermittency in the Heliosphere

In the ecliptic:

- fast solar wind is generally less intermittent than slow wind both for wind speed and magnetic field components [*Marsch and Liu* 1993; *Bruno et al.*, 2003].
- the intermittency of the fast wind increases with the increase of the distance (0.3-0.9 AU) from the Sun [*Bruno et al.,* 2003].

Beyond the ecliptic plane:

- magnetic field components measured by Ulysses present a high level of intermittency throughout minimum (1994-1996) and maximum (2000-2001) [*Pagel and Balogh*, 2002].
- slow wind has a lower level of intermittency compared with the fast flow
- [Pagel and Balogh, 2002].
- in the polar coronal fast wind at solar minimum between 1994 and 1996 that intermittency increases with increasing the radial distance from the Sun [Pagel and Balogh, 2003]
- slow wind measured at R = 5.1 5.4 AU, L < 20°, during 1992-1997 is more intermittent than fast wind and slow wind does not present radial evolution. [Yordanova et al., 2009].

Ulysses Mission

Radial distance: 1.4 - 5.4 AU

Heliographic latitude: -82°-+82°

D5MINSW : 1997, 1998

D1MAXSW: 1999, 2000, 2001

D3MINSW : 2007 and 2008

Data plots

6-hour averages have been prepared for the data survey

Thresholds

Table: The threshold values for the five solar wind parameters used during data selection

	Solar Minimum		Solar Maximum			Solar Minimum	
Threshold	1997	1998	1999	2000	2001	2007	2008
	4.7-5.4 AU	5.2-5.4 AU	4.2-5.2 AU	2.0-4.2 AU	1.3-2.6 AU	1.4-2.6 AU	2.0-4.1 AU
t_v [km/s]	500	450	450	450	500	500	500
t _{07+/06+}	0.1	0.1	0.1	0.1	0.1	0.05	0.05
t _{Compr.}	0.1	0.1	0.1	0.1	0.1	0.1	0.1
t _{Тр} [K]	5*10 ⁴ (d<160) 4*10 ⁴ (d>160)	4*10 ⁴	5*10 ⁴	5*10 ⁴	1*10 ⁵	8*10 ⁴	8*10 ⁴
t_n [cm ⁻³]	0.2	0.2	0.2	0.4 (d<200) 1.2 (d>200)	1.5	1.5	0.7 (d <200) 0.3 (d>200)
t n [cm ⁻³] (at 1 AU)	5.2	5.7	4.5	4.9 (d<200) 7.5 (d>200)	5.7	6.0	5.1 (d<200) 4.2 (d>200)

d- denotes the day of the year

Data base

126 time series (17400 h)			
88 cases - Fast solar wind 38 cases - Slow solar wind			
Instrument: VHM-FGM			
All all components : RTN , Mean Field Ref. Sys.			
0.5-1 Hz			

[Bruno and Carbone, 2013]

Multifractal analysis

1) Measure

Multifractal Spectrum

3) Legendre Transform

Degree of multifractality=level of intermittency

Radial evolution of multifractality (intermittency)

750 multifractal spectra

Wawrzaszek, A., M. Echim, R. Bruno, *The Astrophysical Journal*, 876: 153, doi: 10.3847/1538-4357/ab1750.

Radial evolution of multifractality (intermittency)

Wawrzaszek, A., M. Echim, R. Bruno, *The Astrophysical Journal*, 876: 153, doi: 10.3847/1538-4357/ab1750.

Latitudinal evolution of multifractality (intermittency)

The decrease of intermittency as the latitude increases with the smallest values at solar poles.

Wawrzaszek, A., M. Echim, R. Bruno, *The Astrophysical Journal*, 876: 153, doi: 10.3847/1538-4357/ab1750.

^{**} Maps of multifractality

Degree of multifractality as function of both heliocentric distance and heliographic latitude

Wawrzaszek, A., M. Echim, R. Bruno, *The Astrophysical Journal*, 876: 153, doi: 10.3847/1538-4357/ab1750.

Conclusions

Distance

 Analysis showed a slow decrease of degree of multifractality as a measure of intermittency with distance (behavior is observed in all magnetic field components, regardless of the reference system (RTN or MF))

Latitude

 Analysis of intermittency over a large range of heliographic latitudes revealed a latitude dependence and confirmed similar intermittent properties of the fast solar wind turbulence observed in the two hemispheres;

Solar cycle

- Analysis of data from the **solar minimum (1997–1998)** showed that intermittency is stronger for slow solar wind than for the fast wind.
- The slow solar wind from solar maximum (1999–2001) and from the solar minimum (2007-2008) revealed in many cases a smaller level of intermittency than for the fast solar wind.

Thank you for your attention

Credits: NASA

SOLAR WIND HEAVY IONS OVER SOLAR CYCLE 23: ACE/SWICS MEASUREMENTS

S. T. Lepri, E. Landi, and T. H. Zurbuchen

Department of Atmospheric, Oceanic, and Space Sciences, The University of Michigan, TC 2210 Ann Arbor, MI 48109, USA Received 2012 December 14; accepted 2013 March 17; published 2013 April 17

The charge states of O^{7+}/O^{6+} and C^{6+}/C^{5+} have long been used to differentiate source regions of the solar wind in the innermost solar corona (e.g., Zurbuchen et al. 2002; Zhao et al. 2009). Recently, Landi et al. (2012a) showed that C^{6+}/C^{4+} was actually a more sensitive indicator of electron temperatures in the corona and therefore an even better indicator of solar wind type and region of origin. Contrary to the charge state ratios of O and C, the average charge state of Fe (Q_{Fe}) has been shown to be a sensitive tracer of electron temperatures at larger heights, up to 4 Rs, so that it can be used as a measure of the evolutionary properties in the far corona (e.g., Lepri et al. 2001; Lepri & Zurbuchen 2004; Gruesbeck et al. 2011).

Intermittency beyond the ecliptic

Authors	Data	Method	Conclusions
Pagel and Balogh [JGR, 2003]	20 second averaged MF (Br, Bt, Bn)	Castaing distribution	in the polar coronal fast intermittency increases with increasing the radial distance from the Sun
	Min (1994 -1996)	Range of considered	transverse magnetic field components are significantly more non-Gaussian than radial
	Fast solar wind	scales	
	1.4 -4.1 au	40-200 s	
	28 cases		
Yordanova et	20 second averaged	Spectral	slow wind measured at $R = 5.1 - 5.4$ AU,
<i>al.</i> [JGR, 2009]	MF (Br, Bt <i>,</i> Bn)	analysis	$L < 20^{\circ}$ is more intermittent than fast wind
	Min (1992-1997)	Flatness	slow wind does not present radial evolution
	Pure fast wind	factor	
	Fast stream		Only pure fast wind presents radial dependence
	Pure slow		
	Slow stream		
	21 02005		

Intermittency beyond the ecliptic

Authors	Data	Method	Conclusions
Pagel and Balogh [JGR, 2003]	20 second averaged MF (Br, Bt, Bn)	Castaing distribution	in the polar coronal fast intermittency increases with increasing the radial distance from the Sun
	Min (1994 -1996)	Range of considered	transverse magnetic field components are significantly more non-Gaussian than radial
	Fast solar wind	scales	
	1.4 -4.1 au	40-200 s	
	28 cases		
Yordanova et	20 second averaged	Spectral	slow wind measured at $R = 5.1 - 5.4$ AU,
<i>al.</i> [JGR, 2009]	MF (Br, Bt <i>,</i> Bn)	analysis	$L < 20^{\circ}$ is more intermittent than fast wind
	Min (1992-1997)	Flatness	slow wind does not present radial evolution
	Pure fast wind	factor	
	Fast stream		Only pure fast wind presents radial dependence
	Pure slow		
	Slow stream		
	21 02005		

Multifractal Spectrum

