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DYNAMICS AND SURFACE CLIMATE.
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EPP: main concept 63 Fw
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EPP populations
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EPP affect different regions
in the atmosphere
EPP energy determines the
penetration depth

auroral electrons: < 30 keV
medium energy electrons:
30 keV-300 keV

high energy electrons: 300
keV- several MeV

GCR: 1 MeV -5x1013 MeV



Direct and indirect EPP effect 68w
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Indirect EPP effect: NO, observations &R Fm

o First evidence of EPP IE EPP-NO, from HALOE in the SH
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for up to 40% of the
stratospheric and
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total NO, column.
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Indirect EPP effect: O, reduction &R Fm

o Stratospheric effects of EPP o EPP induced intra-seasonal variability of ozone
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Indirect EPP effect: SSW 6 o

ACE-FTS
Paivarinta et al., 2013

L

| « NO, connection between the MLT and
Y o stratosphere can be intensified not only
100 by EPP but also sudden stratospheric

warmings (SSWs)

NU, change %)

« Strong downward transport associated
with SSW intensifies the descent inside
the polar vortex
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Observations

« NO, increased due to SPEs and SSWs by
a factor of 1-25 between 40-90 km

e Ozone loss of the order of 10-90%

« The largest mesospheric NO,
enhancement observed in 2009
following the major SSW

e In 2012 (SPEs + SSW) enhanced amounts
of NO, were transported down to 40 km
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Indirect EPP effect: models
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Influence of the EPP on chemical
composition of the atmosphere

Rozanov et al., 2012
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down to about 26 km in SH
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Polar ozone response to MEE
over decadal time scale

Andersson et al., 2018
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Indirect EPP effect: dynamics
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Statistical study from reanalysis
data: ERA-40 Reanalysis
(1957-2002) and ECMWF
Operational analyses (2002-2006)

EPP leads to stratospheric ozone
reduction in the late winter/spring

From chemistry:
e (1

The spring Ap signals show the
opposite sign to that expected due
to in situ cooling effects caused by
catalytic destruction of
stratospheric ozone by descending

EPP-NO,
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Pressure evals (hPa)
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Geomagnetic perturbations on stratospheric
circulation in late winter and spring: high-low
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Indirect EPP effect: longitudinal variations

Why EPP-NO, effects should be
studied in 3D?

e EPP-NO, indirect effect exhibits

longitudinal variations

e Zonally asymmetric descent into the
top of the polar vortex

e Lagrangian Coherent Structures that
confined NO-rich air to polar
latitudes
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Figure 2. 3-D representation of the Arctic polar vortex (colored by
temperature) and stratospheric anticyclones (colored black) on January 21,
2009, at 00 UT based on MERRA-2. An NH polar map of 90 km NO VMR
from WACCMX + DART hovers above the split vortex. White contours in
the NO map indicate where model GPH deviates by more than 1 km below
the zonal mean, indicative of PW troughs. GPH, geopotential height; NH,
Northern Hemisphere; PW, planetary wave; VMR, volume mixing ratio.



EPP: surface air temperature response

Reanalysis data

Statistically significant differences in winter- time
polar SAT between years with high and low Ap.
The are visible in both hemispheres, up to 4.5 K.
Results agree with model predictions

EPP indirect effect takes place during
polar spring and contradicts
tropospheric temperature analyses

showing changes starting during
the winter season

CCM model
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e Changes SAT in NH due to EPP

« EPP effect is strongest over high latitudes,
resulting in the SATs increasing over
Europe, Russia and the U.S. by up to 2.5 K

Early winter chemical-dynamical
coupling, starting before the EPP
indirect effect, might play a major role
in transferring any EPP signals
downwards.



Dynamical coupling
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EPP impact on the atmosphere
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Direct and indirect impacts from EPP. EPP ionisation is focused on the polar regions leading to
production of HO, and NO,. Transport processes shown with grey dotted lines, coupling mechanisms

indicated with grey dashed lines. Direct chemical impacts shown with black arrows.

EPP-induced ozone loss

Changes in long-wave cooling and
short-wave heating

Impact on T and zonal wind

Changes in wave propagation

Changes in the radiative budget
and mean meridional circulation
connects back to the temperature
and the polar vortex strength

Strong vortex leads to positive
NAM and surface temperature
anomalies



EPP: surface response SR P

« ECHAMS: surface air temperature
response to geomagnetic activity

« EPP - NO, leads to ozone depletion : —_
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Climatological change of O, Climatological change in T

« Changes in the radiative budget and mean
meridional circulation cool the lower
stratosphere and strengthen the polar
vortex
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 Strong vortex leads to positive Northern
Annular Mode anomalies

« NAM anomalies propagate to the surface
resulting in temperature anomalies

NAM index: red-yellow/blue colours
indicate positive/negative differences.



EPP: dynamical coupling

« ECMWEF ERA reanalysis data -> geomagnetic
activity signatures in wintertime stratosphere
wind, temperature, and wave response

« DJF: for high geomagnetic activity levels more
planetary waves are refracted towards the
equator, away from the polar region

» Less waves disturbing the polar vortex and
therefore stronger vortex

e Decreased mean meridional circulation causes
cooling the polar stratosphere

« Anomalously strong polar vortex in late winter,
would lead to positive NAM anomalies.
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EPP dynamical coupling 68w

Wind and temperature response to Ap
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« ERA-40 and ERA-Interim reanalysis

e Contribution from different drivers to the northern polar vortex variability: EEP, solar
irradiance, ENSO, volcanic aerosols and QBO

» EEP effect accounts for about 10-20% polar vortex variability

e All the other drivers together account for up to 35%
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EPP in the future 6 Fm
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Summary 6 Fm

« EPP impact on the middle atmosphere chemistry and dynamics through direct and indirect
effect is well established

« There is increasing evidence that EPP might play and important role in regional climate
variability

« However, the chemical-dynamical EPP coupling mechanism from thermosphere down to
the surface is complex and remains challenging with a lots of uncertainty and different
processes involved

« Necessary steps in understanding potential links between EPP and regional climate
variability

Adequate representation of MEE/EPP forcing

Model dynamics that captured well descent from the MLT region down to the
stratosphere

Long simulations for a statistically robust separation of any EPP signals from the
background dynamical variability

Continuous observations of EPP as well atmospheric composition

One coherent mechanism that incorporates all the processes involved



