

An assessment of the impact of (radiation belt) electron precipitation on the middle atmosphere

Miriam Sinnhuber

Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology

www.kit.edu

Atmospheric ionization by precipitating particles

Mironova et al., Rev. Geophys., 2015

Atmospheric ionization by precipitating particles

Mironova et al., Rev. Geophys., 2015

Atmospheric ionization by precipitating particles

Formation of NO in the atmosphere

Electron precipitation during geomagnetic storms Average of 8 years of POES/MEPED 0° telescope

 \rightarrow Precipitation occurs in narrow band of geomagnetic latitudes

Horne et al., GRL, 2009

NO observations during high geomagnetic activity SCIAMACHY/ENVISAT, 2002-2012 summer average, 64 – 84 km

Superposition of 10 years of NO during periods of high Ae show clear enhancement in the upper mesosphere: 65 – 84 km, 60-70° geomag. Lat.

 \rightarrow Lower edge defined by instrument sensitivity

Sinnhuber et al., JGR, 2016

NO number density

10⁷ cm⁻³

- Superposition of 6 years of NO₂ during periods of high Ap show (small) enhancement in the upper stratosphere:
- 46 52 km, 60-70° geomag. Lat.
- → Upper edge defined by reaction of NO with ozone forming NO_2

NO₂ mixing ratio

60

NO formation during individual storms and substorms

NO formation during individual storms and substorms with MIPAS/ENVISAT v8, April 9: recovery phase of geomagnetic storm Kerlsruhe Institute of Technology

Enhanced NO in 50-70°N, 55 – 110 km. Lower edge not clear due to NO₂ formation

NO formation during individual storms and substorms MIPAS/ENVISAT v8, March 30: substorm

Enhanced NO in 60-70°N, 60 – 110 km. Lower edge not clear due to NO₂ formation

NOx formation during individual substorms December 2009

NOx formation during individual substorms MIPAS v8, NO+NO₂ (ppb), 68 km

Enhancement of NOx at high latitudes: downward transport in polar winter vortex (indirect effect)

NOx formation during individual substorms MIPAS v8, NO+NO₂ (ppb), 68 km

Enhancement of NOx¹¹⁰ observed in geomagnetic midlatitudes (<50° geomag), possibly due to fast transport around vortex edge

On December 14, midlatitude precipitation observed by balloon over Moscow

Summary

- Observations show formation of NO (55 90 km) and NO₂ (46 55 km) during enhanced geomagnetic activity in geomagnetic latitudes 60-70°
- In two cases, enhanced NOx was observed at geomagnetic midlatitudes during (slightly) enhanced Ae
- → Enhanced NOx could be due to transport within polar vortex, but midlatitude precipitation was also observed by balloon instrument on Dec 14, 2009
- So, can NO observations be used to constrain electron precipitation? → In principle yes, however:
 - not clear from the atmospheric observations what the source of the ionization is: altitude < 70km suggests >300 keV electrons
 - More analysis clearly needed, e.g., full MIPAS v8 dataset

Thanks for your attention!

Aurora from the ISS, @ ESA/NASA

The Changing-Atmosphere IR Tomography Explorer CAIRT: An ESA Earth Explorer 11 candidate

Infrared limb emission imager with instantaneous view from troposphere to lower thermosphere:

5-115 km, with 5x5x1 km spatial resolution

Target species temperatures and >29 trace gases including NO and ozone, observed simultaneously

One of four candidates selected for phase 0, further down-selection to 1 in 2025; launch early 2030th

NO formation during individual storms and substorms MIPAS/ENVISAT v8, April 9: comparison to model results with different ionization rate data-sets

Multi-model mean of WACCM6, HAMMONIA, KASIMA, EMAC using

Observations qualitatively not well reproduced by ionization rate data-sets: energy range of POES/MEPED, with uncertain upper energy range

19 February 6, 2023

Project SPEACH funded by the Deutsche Forschungsgemeinschaft DFG

Forcing data Atmospheric electron ionization rates

Atmospheric ionization rates, 32-106 km from 8 different models, March-April 2010

All based on POES/MEPED

- Different energy ranges from <300 keV to <2.7MeV
- \circ Using 0° / 0°+90° telescopes
- Energy deposition by equation of transfer / continuous loss / Monte Carlo
- Using different atmospheres for energy loss

Nesse Tyssoy et al., JGR, 2022

Forcing data Atmospheric electron ionization rates

Ionization rates differ by ~1 order of magnitude despite being based on same electron fluxes:

- → Clear need of observations of electron fluxes with
 - Pitch-angle distribution
 - Spectral (energy) resolution
 - \circ 30 keV MeV
 - transfer / continuous loss / Monte Carlo
- Using different atmospheres for energy loss

Nesse Tyssoy et al., JGR, 2022

Atmospheric impact of electron precipitation

Energy deposition of precipitating electrons


```
Lower thermosphere (> 90 km):
Auroral (keV)
```

MLT (mesosphere/lower thermosphere) (50 - 115 km): Radiation belts Radiation belts (10th of keV to MeV)

Courtesy of Robert Marshall, CU Boulder/ASEN