The Role of Solar Active Region Decay in Energising the Corona

Dr Karen Meyer, Ben Duncan

University of Dundee

Prof Duncan Mackay University of St Andrews

Thanks to the support of the Carnegie Trust for the Universities of Scotland and the STFC

Aims

- Model active region surface magnetic field evolution, including:
 - Global processes (e.g. differential rotation)
 - Local processes (e.g. convection, moat flow, "magnetic carpet")
- Model and analyze resultant coronal magnetic field evolution

Active Region Decay

• Decay rate: $2 - 8 \times 10^{20} \text{ Mx day}^{-1}$

(e.g. Hagenaar & Shine, 2005; Deng et al., 2007; Kubo et al. 2008; Louis et al. 2012; Sheeley et al., 2017; Norton et al. 2017)

- AR "gnawed away" by convective cells (Dacie et al. 2016)
- Flux transported by moving magnetic features (MMF) in moat (Kubo et al. 2007)
- Cancellation at boundary of moat (Kubo et al. 2008)

Magnetic Carpet Model

Meyer et al. 2011, Meyer et al. 2016:

We impose:

- Supergranulation
- Emergence, cancellation, coalescence, fragmentation
- Flux emergence from observations (Thornton & Parnell, 2011)

Resulting flux dist. agrees with observations (Parnell et al. 2009)

Active Region Representation

• Idealised AR from Mackay SFT model

(Mackay et al. 2002; Yeates et al. 2007; Mackay et al., 2014)

$$B_r = -B_0 e^{0.5} \frac{x}{\rho} \exp\left[-\left(\frac{x^2/2 + y^2}{\rho^2}\right)\right],$$

 \odot Instead we split into many elements

 \odot Simulate their evolution

Result including only differential rotation – agrees with Mackay

Modelling Active Region Decay

Standard SFT model includes diffusion coefficient

Modelling Active Region Decay

Standard SFT model includes diffusion coefficient

```
(e.g. DeVore et al., 1985; Wang et al., 1989; Yeates et al., 2007)
```

In our model we add:

• Shedding of elements from spot (Decay rate 3 \times 10^{20} Mx/day)

• Moat flow
$$v_r = \left(\frac{r}{r_0}\right) \exp\left(1 - \frac{r^2}{r_0^2}\right)$$

Supergranulation outside moat

Fragmentation, Cancellation and Coalescence

After breaking off, elements are handled by the magnetic carpet model

Here we add:

- Fragmentation
- Cancellation or coalescence with a nearby element

Question

What is the effect of these 'smaller scale' active region decay processes (moat flow, supergranulation and magnetic carpet interactions) on the evolution of the coronal magnetic field?

Coronal Magnetic Field Simulations

• Magnetofrictional relaxation from initial potential field

- Cartesian, $456 \times 316 \times 250$ grid cells, resolution 866 km
- Time step 1 day (500 relaxation steps in between), 89 days total

Coronal Magnetic Field Simulations

Same initial condition for all: idealized bipole

- Model 1: diffusion term only
- Model 1a: moat flow + s/g
- Model 1b: as 1a + cancellation + coalescence
- Model 1c: as 1b + fragmentation
- Model 2: differential rotation + diffusion term
- Model 2c: as 1c + differential rotation

Model 1: Diffusion Only

Model 1a: moat flow + supergranulation

Model 1b: as 1a + cancellation + coalescence

Time (days)

Model 1c: as 1b + fragmentation

Model 2: differential rotation + diffusion

Model 2c: as 1c + differential rotation

Free Magnetic Energy

Summary

- 2D model includes effects of 'smaller scale' processes on AR decay:
 - Moat flow and supergranulation
 - Cancellation, coalescence, fragmentation
- Effect in corona: including these processes builds up significant free magnetic energy – same order of magnitude as including differential rotation.
- Future work:
 - Consider other properties of coronal field, e.g. structure, helicity, ...
 - Interaction with pre-existing quiet Sun features

Total Flux

