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Outline & Motivation

* Galactic Cosmic rays (GCRs) represent a major threat to long-duration
space flight outside the magnetosphere that protect us from large
part of the radiation.

* The heliosphere provides an additional shield that keeps ~85 % of the
radiation away from Earth. This shield depends on the solar magnetic
field carried out by the solar wind and its effectiveness changes in
response to the solar activity and on our changing interstellar
environment (see NASA Shield project)

* GCRs can give remote observations on solar activity in the past, and
TeV GCRs offer a unique tool to study the magnetic field near the Sun



Galactic and Anomalous Cosmic Rays (GCRs, ACRs)
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* GCRs: extend over many decades
In energy

e Most of the radiation at Earth
comes from the GeV range

e Solar modulation (11-year cycle)
is important below few tens of

GeV, but solar effect extend to
TeV energies.

* Proxy of solar activity in the past



Our Interstellar Environment, Modulation
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NASA’s Shield Project
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Understanding Our Heliospheric Shield




Solar Modulation in a Nutshell: Diffusion, HCS & Drifts

Heliospheric current sheet (HCS) From Jokipii & Wibberenz
flattish at Solar Mins.
180 E. SMITH 2-PHASE PICTURE OF MODULATION

A. 7-8 Years around Sunsport Minimum B. 3-4 Years around Sunsport Maximum

Fast organized GCR drifts along HCS & TS. Outward moving Barriers
changes sign with the polarity state of Sun (GMIRs) at Solar Max.



Parker (1965) Equation

Frequent scattering maintains near isotropy of GCRs

Parker (1965):  f = f(x;, p,t) — omnidirectional density
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Drift is hidden in the anti-

symmetric component:
vrg/3 in weak scattering
limit, reduced otherwise



Parker Spiral of Field Lines: Parallel vs. Perpendicular diffusion
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Parker spiral B is tightly wound Perpendicular diffusion wins
Cross-field diffusion is important in the outer heliosphere



Particle Drifts in the Large-scale Magnetic Field

180

E. SMITH

 Jokipii et al (1977) pointed out that
drift motion is an important part of
GCR transport.

* Drift is charge/polarity dependent,
that appears in asymmetries of even
and odd cycles (anisotropies-peak-
plateau cycles — latitudinal gradients)

* Fast, polarity dependent drifts along
the HCS and TS allows fast transport
along the HCS. May appear as large
perpendicular diffusion



Drift Effects — why are they important

* GCRs can “freely” drift along the HCS
and the termination shock (TS)

* This might appear as a fast
perpendicular diffusion of unknown
origin.

* This would be a simplification that
loses the essential physics of even-odd

. “Make everything as
asymmetries

simple as possible,
* Driftis an indispensable part of GCR but not simpler “

transport.



Numerical simulation: of a 22-year Solar Cycle
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Recent Weak Solar Cycles: Record high GCR fluxes at Earth
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GCRs as Proxies of Solar Activity in the Past
Cosmogenic isotope C14 (from Ken McCracken)

Cosmic-ray flux as inferred from cosmogenic measurement
were ~20% higher than their current solar minimum values
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GCR flux during Grand Minima appears to show 11 and 22-year variations. Drift effects at work ?



Application 1-10 TeV GCRs ; Tibet Air-shower (EAS) Array

(Amenomori et al, Science 2013):
What do they tell on the Magnetic Field near the Sun?

e The Sun (like the Moon)
blocks GCRs and creates a
cosmic-ray shadow

 that changes its size, and

* jsdisplaced relative to the
optical size/center

» TeV trajectories are traced
back in a synthetized field
using magnetogram data.

* PFS & CSSS compared

* Relevant to Solar gammas




Resolving the incident direction

« 533 counters of 0.5 m? each placed on a 7.5mx7.5m square grid
« 22,050 m? detection area

y. . A .
 Achieved...
- Highest statistics &

Best angular resolution
In multi-TeV region

trigger rate ~ 680 Hz
| )angular res. ~ 1°




Sun’s Shadow in GCRs: 11-year cycle (1996-2009)

1996 Solar max 2002
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Sun’s Shadow in TeV cosmic ray observations
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* Sun’s cosmic-ray shadow changes in
11 & 22 year cycle

e Solar minima: strong shadow

e Solar maxima: shadow essentially
disappears

* Shadow is displaced in longitude and
latitude as the Sun’s polarity reverses

* PFSS and CSSS models are compared
(CSSS gave better fit)



TeV GCRs as probes Magnetic Field near the Sun

Carrington Rotation Number = 1909 (Cosine Theta) Carrington Rotation Number = 1963 (Cosine Theta)
Longitude= 0.0 dgr Latitude= 0.0 dgr Longitude= 0.0 dgr Latitude= 0.0 dgr

0.0 = |Br| < 1000.0 G ey N= 90 0.0 = |Br| < 1000.0G s N= 90
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Related topic: TeV GSRs hitting the Sun produce high-energy gammas
that are detected by satellite Fermi. Results are still puzzling



Summary: progress is being made ©

Basic principles well understood
Still lot of things to think about







Galactic and Anomalous Cosmic Rays (GCRs, ACRs)
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GCRs on longer Time-scales (from K. McCracken)
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Cosmic Rays & our interstellar environment
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Numerical simulation: of a 22-year Solar Cycle
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Numerical simulation: 2 cases of Solar Min.
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Numerical simulation of GCR flux in an 11-year Cycle

A<O 0.5GeV - A<O 0.5GeV

Normalized Flux
o

Normalized Flux
o

arth
.'.gorth ---------------- .
..’ '.. B ] A '.. ~....
L tit=P | . "'Filt=5°_
L I [ AN I T T TR VN EER R | I T} I T TR
0O 2 4 6 8 10 0 2 4 6 8
Time [yr] Time [yr]

Changing HCS only HCS & B



Summary: progress is being made ©

Basic principles well understood
Still lot of things to think about



