

Properties of Coronal Holes Causing Intense Geomagnetic Storms in Solar Cycles 23 and 24

Nat Gopalswamy¹, Pertti Mäkelä^{1,2}, Seiji Yashiro^{1,2}, Sachiko Akiyama^{1,2}, and Hong Xie^{1,2}

¹NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA ²The Catholic University of America, Washington DC 20064, USA

Space Climate 8, Krakow September 19-24, 2022

Cycle 24 has weaker and less frequent storms

Cycle 24 is the weakest cycle in the space age

Mild space weather Weak solar activity combined with backreaction of the heliosphere on solar wind structures.

Gopalswamy 2012; Richardson & Cane 2013; Gopalswamy et al. 2014; 2015; Kakad et al. 2019; Hajra 2021

GM Storms of cycle 24: low intensity, less frequent

Intense storms (Dst \leq -100 nT)

All storms: 74% reduction CME storms: 74% reduction CIR storms: 80% reduction

CIR/HSS

Vpk = 695 km/s Vint = 424 km/s Bz = -20.7 nT Dst = -124 nT

 $\begin{aligned} \int vBsdt &= I(Ey) = 151 \text{ Wb/m} \\ \int Qdt &= I(Q) = -200 \text{ nT} \\ Q (t) &= -4.4 (VBs - 0.49)(P_f/P_0)^{\gamma}, VBs > 0.49 \text{ mV/m} \end{aligned}$

Murayama 1982; Fenrich &Luhmann 1998; Wang et al. 2003; Xie et al 2008; Le et al. 2020; Zhao et al. 2021

CIR Storms of cycles 23 and 24

Dst Date	Time	Dst	CH Date & Time	Loc.	Pol.	Area	< B >	Flux
		(nT)				(10^{20}cm^2)	(G)	$(10^{21} \mathrm{Mx})$
Cycle 23								
1996/10/23	05:00	-105	1996/10/20 07:03	N00	+	7.33	7.3	5.35
1998/03/10	21:00	-116	1998/03/08 09:03	S30	-	1.86	11.9	2.22
1998/08/07	06:00	-108	1998/08/04 04:14	???	+			
2002/09/04	06:00	-109	2002/08/31 06:48	S15	+	9.39	15.6	14.7
2002/10/07	08:00	-115	2002/10/05 01:48	S07	+	24.6	20.0	49.2
2002/10/14	14:00	-100	2002/10/11 02:39	N25	-	8.50	18.9	16.1
2002/11/21	11:00	-128	2002/11/18 13:21	S04	+	8.40	12.5	10.5
2003/07/12	06:00	-105	2003/07/07 21:40	N04	-	6.61	10.9	7.20
2004/02/11	18:00	-93	2004/02/10 09:24	N02	-	17.6	11.2	19.7
2005/05/08	19:00	-110	2005/05/07 01:36	N10	-	20.6	16.5	34.0
2005/08/31	20:00	-122	2005/08/29 10:48	S12	+	18.0	17.0	30.6
2006/04/14	10:00	-98	2006/04/12 17:59	N02	-	4.77	9.2	4.41
Cycle 24								
2013/06/01	09:00	-124	2013/05/30 00:00	N00	+	10.3	9.3	9.62
2015/10/07	23:00	-124	2015/10/05 08:00	S05	+	9.60	7.3	7.03
2016/03/06	22:00	-98	2016/03/02 17:15	S08	-	1.70	8.0	1.36

Table 2. List of intense storms in cycle 23 and 24 and the associated coronal hole properties

Average B 8.2 G vs 13.7 G (-40%) Area 7.2x10²⁰ cm² vs 11.6 x10²⁰ cm² (-38%) Flux 6.0×10²¹ Mx vs. 1.76x10²² Mx (-66%) Vpk 712 km/s vs. 643 km/s (10%) Vint 408 km/s vs. 450 km/s (-9%)

Nakagawa et al. 2019 (A, V smaller) Grandin et al. 2019 (lower geoeffectiveness)

Heliospheric state weaker in cycle 24

Comparison with CME Storms

Weaker Correlation between I(Ey) and Dst

Double Dip CIR Storms

Kamide et al. 1998; Zhang et al. 2008 double dip due to sheath & cloud storms

Two Dips due to two Bz<0 intervals

Summary

- There was a reduction in the number of intense storms in SC 24
- The number of CIR storms dropped from 10 to 2 (-80%)
- CH area, average magnetic field dropped by ~40% in cycle 24
- The storm-causing HSS speed is similar in the two cycles \rightarrow only occasionally the compression is high enough to cause intense storms
- Dst I(Q) correlation is significant, but lower than that for CME storms
- Dst I (Ey) correlation is much weaker, but the trend is similar to CME storms
- Confirms the importance of dynamic pressure in enhancing the ring current energy