

Irradiance reconstructions from modern and historical Ca II observations

Theodosios Chatzistergos, N. A. Krivova, I. Ermolli, S. K. Solanki, K. L. Yeo, S. Mandal, G. Kopp, J.-M. Malherbe

20 September 2022

Outline

- 1. Motivation
- 2. Overview of Ca II K data
- 3. Evolution of plage areas
- 4. Relation between plage and sunspot areas
- 5. Connection between Ca II K brightness and magnetic field
- 6. Reconstructions of solar irradiance variations

Total solar irradiance

TSI: spectrally integrated solar radiative flux at 1 AU

Records of direct TSI since 1978

Irradiance reconstruction models

Motivation

Call K observations

Centred at 3933.67 Å Strongest absorption line in solar spectrum

CCD data (since 1980's) Photographic data (since 1892)

- Only recently available digitally
- Numerous artefacts
- Non-linear response to radiation
- Collections of very diverse data

Differences between archives

Main differences between archives

Corrections and calibration developed by me

Automatic process to:

- Photometrically calibrate images
- Compensate for instrumental and physical effects

Evaluated method's accuracy with synthetic data

• Performs better than all other methods in the literature

Works consistently with quite diverse data

Ca II K archives

Plage coverage over the 20th century

Meudon

0.15Å

. نورسه

Kodaikanal

0.5Å

MM MS MD2 MD1 Mi2 MW

PS PM RP2 RP1

Ro SF2 SF1 Te UP

2020

Chatzistergos et al., 2020b, A&A 639

Plage coverage over the 20th century

The data are available at https://www2.mps.mpg.de/projects/sun-climate/data.html

Relation between plage and sunspot areas

Chatzistergos et al., 2022, A&A

Dependence of relation on bandwidth

Reconstructing plage areas from sunspots

Chatzistergos et al., 2022, A&A

Ca II K as proxy to magnetic field

> Ca II K brightness is an excellent tracer of photospheric magnetic fields

Fit parameters in time and position of solar disc

Reconstructing historical unsigned magnetograms

Spectral And Total Irradiance Reconstructions (SATIRE)

SATIRE reconstruction with Rome/PSPT Ca II K

Agreement to different TSI series

Chatzistergos et al. et al. 2021

Reconstructions with diverse Ca II K archives

Archives with different

- Bandwidth (0.09 9 Å)
- Central wavelength
- Pixel scale (~0.7 5.5"/pixel)
- Cadence

Reconstructions with high-cadence data

Results with photographic Ca II K data

Chatzistergos et al. et al. 2021

Summary

- Ca II K observations are an extremely valuable, but largely unexplored, resource for irradiance studies
- We performed a comprehensive analysis of Ca II K observations
 - Produced the first plage area composite from 38 archives
 - Scrutinised the relationship between plage and sunspot areas
 - Reassessed the relation between Ca II K brightness and magnetic field strength
 - Reconstructed TSI variations with SATIRE model
 - ► The reconstructions show excellent agreement with TSI composites
 - ▶ We acquire accurate reconstructions with quite diverse Ca II K archives including photographic ones

Thank You