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Background and Motivation.
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Because space weather is the entire
Sun-Heliosphere-Earth system!
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Space weather arises (mainly) from solar
ejecta (CMEs) impacting the Earth, In

particular plasma and particle radiation.

Need to understand energy flow:

Source (Sun) and transmission (solar wind), processing by
the  Earth’s own  magnetically-confined  system
(magnetosphere, ionosphere/atmosphere, lithosphere).
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Space Weather Example Impacts. . ::z:;;:;':%zm.
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The LOFAR For Space Weather
(LOFAR4SW) Project: A Brief
Overview.

(Funded under the Horizon 2020 Programme H2020 INFRADEV-2017-1
under grant agreement 777442.)
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LOFAR Locations
- pace

» 38 NL stations and 14 international stations.
* 1 new station to come in Italy (2023?).
* 1 new station to come in Bulgaria (20247?).
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| OFAR4SW Ultimate Challenge ~ EI=.

—

« Make one telescope into two:
« With NO effect on normal astronomy operations!
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S %ace-Weather Advancements

Final Combined LOFAR4SW Use Case Prioritisations
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Ely LOFAR4SW...

 The LOFAR4SW Design Study was the first step towards a
fully-capable LOFAR Space-Weather instrument!

We don't know what the Sun may do next, or when, so need to
P s [ sase e s are B Bl monitor to be able to observe and study all possible events.
during a 6-month observation “cycle”.
The current LOFAR system is unsuited to the type of
Projects are reviewed by a panel of international monitoring heeded to accomp"sh this:
scientists who then allocate time awards.
For example, during the highly active period of September 2017:
- Missed observing the largest solar flare of the last cycle by ~30
minutes!
- Stopped observing the second largest just at its peak.
- Did not observe Earth-bound CMEs.
- Did not observe strong ionospheric response.

Observations scheduled based on awarded time.

Hence LOFAR4SW! An EC-funded Design Study to design an
upgrade to LOFAR to allow full-time monitoring of space
weather in parallel with radio astronomy.

Central correlation and
data processing

Station signal processing

Data Archive Astronomers
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LOFAR4SW Upgrade Progress...
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LOFAR4SpaceWeather: Towards
Space Weather Monitoring with

Europe’s Largest Radio Telescope

A fully-implemented LOFAR4SW will be one of Europe’s most
comprehensive space weather observatories, shedding new light on
several aspects of the space weather system, from the Sun to the
solar wind to the ionosphere.

© 2022 RAL Space

13




RAL Space

Part 3 '

Future Opportunities with Radio
Observations.
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The Heliosphere — 12/09/17 CME (1)
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 LOFAR can obtain detailed information on the solar wind and
CME velocity, density, and turbulence, from long-duration
observations as well as building up a dataset of short-duration
observations suitable for driving tomographic/kinematic and
MHD models. ———
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The Heliosphere — 12/09/17 CME (2)

 LOFAR “imaging” of the turbulent scintillation structure gives
fundamental information on the small-scale structure within
the solar wind and CMEs as well as of the fundamental
structure of the radio sources on the sky.

* Images below (see Fallows et al., ASR, 2022 for details) show
the 2-D spatial correlation of many baseline combinations
of the LOFAR IPS observations of radio source 3C147 on
12 September 2017 during the passage of a CME...

« Also, Iwal et al., ASR, 2022 (same
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The Heliosphere — 12/09/17 CME (3)
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« UCSD 3-D tomography using ISEE, Japan, IPS data along with
the LOFAR line-of-sight projection to radio source 3C147
superimposed on the images (density, left; velocity, right).
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énd if we had even more IPS data... ;iﬁ“*?’e'?%‘@m"

. Using the UCSD 3-D Tomography for space-weather
reconstructions of the inner heliosphere in this detail...?
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« See Bisi et al., Ann. Geophys., 2009 for further details. ..
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Potential for CME Magnetic Fields ==

—

* The “Holy Grail” of space-weather prediction iIs considered to
be that of the magnetic field across the inner heliosphere from
the Sun to the Sun-Earth L1 where is it measured.

* Measurements of
the Faraday
rotation (FR) of
pulsar signals
traversing CMEs
show considerable
promise in being
able to observe
the magnetic field
of a CME iIn the
Inner heliosphere.

Rotation Measure, rad/m2

PSR J1022+1001 - 13th August 2014

__Red curve below shows the change in |
rotation due to the passage of a CME.

| | | I I
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Time, hrs UT
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Agd closer to the Earth... PR o

« Studies of magnetospheric dynamics and magnetosphere-
lonosphere coupling are crucially dependent on information
about the upstream solar wind/CMEs.

« These which plays a dominant role in determining activity within the
Earth’s space-environment.

* The ability to track the arrival of such features with long lead-
In times, to know their speed, dimensions, and structure, will
revolutionise our understanding of factors controlling the
detrimental “geoefficiency” of solar storms.

* The use of radio-wave scintillation observations from LOFAR
enables us to model in detail the actual spatial and temporal
evolution of scintillation-inducing structures in both the
heliosphere and ionosphere, gaining unigue insight through a
combination of single- and multi-station observations.
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... With Possible Ways Forward... ::z::a:::aw.
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* Analysis and interpretation of historical LOFAR scintillation
data for both the heliosphere and the ionosphere.

 Extract basic inner-heliospheric and ionospheric parameters.

* Research on unique LOFAR observations to identify novel
additional parameters (e.g. magnetic field orientation) to
Include the characterisation of inner-heliospheric and
lonospheric micro-structure.

« Understand the magnetosphere-ionosphere response to
Inner-heliospheric structures detected and analysed through
LOFAR observations of scintillation, utilising ground-based
(e.g. SuperDARN, EISCAT 3D, SuperMAG), and spacecraft
mission (e.g. SMILE), measurements.

 Ultimately, an improvement to current space-weather forecast
capabilities.
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And A Future Potential Project!
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